
First Thoughts on Interactions with the Time
Conditions Database

� Strategy and Goals
� Starting Assumptions
� Reminder: Silicon Tracker Description Design (D. Calvet)
� Athena Infrastructure Issues
� Action Plan

M. Shapiro, U.C. Berkeley/LBNL

AATTLLAASS �������	��

������������
��������! ��#"%$	&('�)#)�)��+*



Strategy and Goals

Goal: To develop general mechanism for retrieving time-dependent alignment constants
from database and using them in reconstruction

� � Requires additions to Athena infrastructure
� � Requires extension of existing detector description interface

Will prototype using silicon and pixel detectors as the use case

AATTLLAASS �������	��

������������
��������! ��#"%$	&('�)#)�)��#'



Starting Assumptions

� Primary description of reco and sim geometry derived from XML using AGDD tools and
Indet classes

� XML description contains information necessary to build ideal (perfectly aligned) detector.
� Misalignments applied by specifying deviations from the ideal.

� These deviations in general time dependent

� Misalignments calculated from numbers stored ”Conditions Database”
� Delivered through a general ”Time Dependent Conditions Service” in Athena (TCS)
� API for TCS not yet determined. Requirements of reco geometry an important input to

design of the service.
� Persistent database design is the responsibility of the database group.

AATTLLAASS �������	��

������������
��������! ��#"%$	&('�)#)�)����



Silicon Tracker Description
(David Calvet)

� Collection of DetectorElements will be accessed through TDeS

� Since TDeS not yet implemented, for now accessed via TES

� DetectorElement contains description of module of pixels or one side of a module of SCT

� Logical Identifier
� Reference to SiDetectorDesign (local geometry)
� Reference to DetectorPosition (global position and orientation)

� Natural to extend DetectorElement to interface to alignment data in DB

AATTLLAASS �������	��

������������
��������! ��#"%$	&('�)#)�)����



What Would Extension of DetectorElement look like?

� Keep existing reference to ideal DetectorPosition
� Calculate true DetectorPosition as product of DetectorPosition and delta from DB
� We want to ��������� this product for speed-performance
� Need to work out notification mechanism for when DB constants change:

� Assumption is that a whole collection is read from DB at once
� Read occurs on first use after change of validity interval
� Does reread force recalculation or just mark old result invalid???

AATTLLAASS �������	��

������������
��������! ��#"%$	&('�)#)�)��	�



Athena Infrastructure Issues

� In addition to event store (TES):
� Need a detector store (TDeS)
� Need interface to conditions DB (TCS)

� A prototype TDeS coded by C. Leggett and P. Calafiura (a second instance of the Store-
Gate Service without object deletion at the end of each event)
� Modified David Calvet’s SiDetectorDescriptor to insert in this store rather than TES
� David C currently reviewing the prototype

� Group formed to work on design and implementation of interface to conditions DB in
Athena: regular phone meeting established.

Christian Arnault, Stan Bentvelsen Paolo Calafiura, Luc Goossens, Charles Leggett, David Malon, Srini
Rajagopalan, David Rousseau, RD Schaffer, Marge Shapiro, David Quarrie

� Group will use silicon alignment as prototype project for development of the infrastructure
� Charles and Luc will work on design of TCS
� Luc will be our representative to database group

AATTLLAASS �������	��

������������
��������! ��#"%$	&('�)#)�)�� �



Action Plan

� Modify David’s classes to include interface alignment constants (M. Shapiro, with advice
from David)

� Create a conditions database that holds fake alignment constants for two separate validity
ranges:
� Specification of what should be stored in the DB should be done by the inner detector

alignment group
� M. Shapiro will code transient class
� L. Goossens will code converter and will create the database

� Develop mechanism to update constants at boundary between validity ranges (discussion
in Conditions DB phone meetings)

Questions for This Group
� What do we want to store in the DB? (perhaps a collection of HepTransforms???)
� Do we want a single collection per system or a finer granularity?
� What key for validity range (Unix Time, run and event number, etc)? How often do consts

change?
� Are there other classes that need to be notified when the constants are updated?

AATTLLAASS �������	��

������������
��������! ��#"%$	&('�)#)�)�� �


